Abstract

This paper studies the dual-arm manipulation of an object by means of two collaborative robots. The latter hold the object through limited contact areas, thus applying unilateral contact constraints. This manipulation strategy increases versatility, since it does not require specific grippers depending on the object shape and size. However, to ensure grasping stability (i.e. no slipping of the object), a suitable internal force must be prescribed to ensure the fulfillment of the static-friction condition. In this work, the trend of the internal force is included among the inputs of a time-optimal trajectory planning, in order to find the minimal internal prestress that is able to both satisfy the static-friction condition and manipulate the object in minimal time. Admittance control is used to modulate the forces exerted by the robot end-effectors on the object. An extensive experimentation, on different 6-dimensional trajectories reaching linear and angular accelerations up to 4.5 m/s2 and 7.4 rad/s2, is presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.