Abstract
Because it reduces forces and temperatures, vibration-assisted grinding has the potential to improve the feasibility of dry grinding. This paper presents an experimental study of force and temperature effects in dry and wet grinding at vibration frequencies below ultrasonic. Based on a moving line heat source model, heat flux quantities were estimated from subsurface temperature measurements. Reductions in force of up to 30 % were observed for dry grinding with 2,360 Hz vibration assistance. For the same condition, heat flux into the workpiece reduced by 42 %. The paper presents evidence that vibration assistance has a beneficial effect on the convective heat transfer rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.