Abstract

1. Simultaneous recordings of tension and [Ca2+]i were made in rat anococcygeus muscle strips to investigate possible mechanisms involved during cyclic nucleotide-mediated relaxation. Relaxation of pre-contracted muscles was induced by sodium nitroprusside (SNP) or forskolin and the effects of cyclopiazonic acid (CPA) on these responses were examined. 2. In muscles pre-contracted with 0.2 microM phenylephrine addition of SNP (10 microM) caused a rapid and near complete relaxation of force. This was accompanied by a decrease in [Ca2+]i, however, this was not of a comparable magnitude to the decrease in force. The level of [Ca2+]i in muscles relaxed with SNP was shown to be associated with substantially higher force levels in the absence of SNP. Forskolin (10 microM) caused a slower, essentially complete relaxation which was associated with a proportional decrease in [Ca2+]i. 3. In muscles pretreated with SNP or forskolin subsequent responses to phenylephrine were attenuated with both force and [Ca2+]i rising slowly to attain eventually levels similar to those observed when the relaxant was applied to pre-contracted muscles. 4. Exposure of the muscles to the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor, CPA (10 microM), resulted in a sustained increase in [Ca2+]i which, in most cases, was not associated with any force development. The relaxation and decrease in [Ca2+]i in response to both SNP and forskolin were attenuated and substantially slowed in the presence of CPA. Overall the extent of this attenuation was greater for SNP. For both SNP and forskolin, CPA attenuated the decrease in [Ca2+]i to a greater extent than the decrease in force. In some cases, SNP-mediated relaxation in the presence of CPA was observed with almost no detectable change in [Ca2+]i. 5. The results suggest that, in the rat anococcygeus muscle under normal circumstances, a lowering of [Ca2+]i can fully account for the relaxation induced by forskolin but not for that induced by SNP, where mechanisms independent of changes in [Ca2+]i appear to contribute. Whilst Ca2+ sequestration into the sarcoplasmic reticulum plays a role in the relaxation mediated by both SNP and forskolin other Ca2+ lowering mechanisms may also be involved, especially in the response to forskolin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.