Abstract

The brain-skull interface plays an important role in the mechano-pathology of traumatic brain injury (TBI). A comprehensive understanding of the mechanical behavior of the brain-skull interface in vivo is significant for understanding the mechanisms of TBI and creating accurate computational models. Here we investigate the force and energy transmission at the minipig brain-skull interface by non-invasive methods in the live (in vivo) and dead animal (in situ). Displacement fields in the brain and skull were measured in four female minipigs by magnetic resonance elastography (MRE), and the relative displacements between the brain and skull were estimated. Surface maps of deviatoric stress, the apparent mechanical properties of the brain-skull interface, and the net energy flux were generated for each animal when alive and at specific times post-mortem. After death, these maps reveal increases in relative motion between brain and skull, brain surface stress, stiffness of brain-skull interface, and net energy flux from skull to brain. These results illustrate the ability to study both skull and brain mechanics by MRE; the observed post-mortem decrease in the protective capability of the brain-skull interface emphasizes the importance of measuring its behavior in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.