Abstract

Artificial muscle is a kind of transmission actuator widely used in rehabilitation robots and wearable devices. However, there are some restrictions on the usage of these artificial muscles, including the short stroke length, complex structure, special power sources, and high nonlinear characteristics. Inspired by Hill-type muscle model, in this article, a new kind of artificial muscle using tendon-sheath and compliant springs is proposed to perform muscle-like characteristics. Force and deformation transmission models are proposed and validated by simulations and experiments. The experimental and simulation output results show nice goodness-of-fit and the R-square values are 0.9876 and 0.9046, respectively. Moreover, experiments are carried out in groups to analyze the transmission characteristics using different parameters, including variations of series springs, velocities, tendon diameters, and bending angles. The best R-square value of force-elongation curve and fitness curve could reach 0.9845, which indicates that the transmission model of the compliant artificial muscle can be used to express the transmission characteristics of the skeleton muscles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.