Abstract
The connected forbidden subgraphs and pairs of connected forbidden subgraphs that imply a 2-connected graph is hamiltonian have been characterized by Bedrossian [Forbidden subgraph and minimum degree conditions for hamiltonicity, Ph.D. Thesis, Memphis State University, 1991], and extensions of these excluding graphs for general graphs of order at least 10 were proved by Faudree and Gould [Characterizing forbidden pairs for Hamiltonian properties, Discrete Math. 173 (1997) 45–60]. In this paper a complete characterization of connected forbidden subgraphs and pairs of connected forbidden subgraphs that imply a 2-connected graph of order at least 10 has a 2-factor will be proved. In particular it will be shown that the characterization for 2-factors is very similar to that for hamiltonian cycles, except there are seven additional pairs. In the case of graphs of all possible orders, there are four additional forbidden pairs not in the hamiltonian characterization, but a claw is part of each pair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.