Abstract
In [H. Broersma, H. Li, J. Li, F. Tian, H.J. Veldman, Cycles through subsets with large degree sums, Discrete Math. 171 (1997) 43–54], Duffus et al. showed that every connected graph G which contains no induced subgraph isomorphic to a claw or a net is traceable. They also showed that if a 2-connected graph G satisfies the above conditions, then G is hamiltonian. In this paper, modifying the conditions of Duffus et al.’s theorems, we give forbidden structures for a specified set of vertices which assures the existence of paths and cycles passing through these vertices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.