Abstract

Regional variability of global sea-level rise remains an important area of study given the vulnerability of sediment-starved coastlines to coastal inundation, especially those in proximity to large population centers. Galveston Bay, Texas, is currently experiencing more than double the global rate of sea-level rise and is particularly vulnerable to storm inundation that will further destabilize the coastline. Limitations in instrumental observations necessitate the use of the geologic record preserved offshore modern Galveston Bay to understand how this particular coastline responds to periods of rapid sea-level rise. We present micropaleontological analysis of sediment cores combined with high-resolution seismic data to reconstruct the Holocene paleoestuary offshore Galveston Bay and its evolution since initial inundation ∼10 ka through marine transgression ∼6 ka. We find that despite rapid sea-level rise, the Galveston paleoestuary maintained relatively stable outer boundaries, and within the bay environmental shifts occurred as a result of probable marine incursions due to tidal inlet migrations. Paleoenvironmental changes in the early Holocene coincide with flooding events within other Texas Gulf Coast bays suggesting global sea-level rise played a prominent role. Middle to late Holocene changes occurred when rates of sea-level rise slowed, suggesting regional hydroclimate change played a more dominant role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.