Abstract

Since the reassessment of oxygen isotope paleotemperatures by N. Shackleton in the late 60s, most papers using isotopic records from planktic or benthic foraminifers imply a direct relationship between oxygen isotopes in seawater and the ice/ocean volume, thus some linkage with salinity, sea level, etc. Such assumptions are also made when incorporating "isotopic modules" in coupled models. Here, we will further examine the linkages between salinity and oxygen isotope ratios of sea-water recorded by foraminifers, and their potential temporal and spatial variability, especially in the northern North Atlantic and the Arctic oceans. If temporal and spatial changes in the isotopic composition of precipitations and ice meltwaters tune the isotopic properties of the fresh water end-member that dilutes the ocean, rates of sea-ice formation and evaporation at the ocean surface play a further role on the salt and oxygen isotope contents of water masses. Thus, the oxygen 18-salinity relationship carries a specific isotopic signature for any given water mass. At the ocean scale, residence time and mixing of these water masses, as well as the time dependent-achievement of proxy-tracer equilibrium, will also result in variable recordings of mass transfers into the hydrosphere, notable between ice-sheets and ocean. Since these records in water mass may vary in both amplitude and time, direct correlations of isotopic records will potentially be misleading. Implications of such issues on the interpretation of oxygen isotope records from the sub-arctic seas will be discussed, as well as the inherent flaws of such records due to sedimentological and or ecological parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call