Abstract

Cores raised during IODP Expedition 303 off southern Greenland (Eirik Ridge site 1305) and off the Labrador Coast (Orphan Knoll site 1302/1303) were analyzed to establish an isotope stratigraphy, respectively for the “inner” and “outer” basins of the Labrador Sea (LS). These isotopic data also provide information on the Atlantic Meridional Overturning Circulation (AMOC), notably with regard to the intensity of the Western Boundary Under Current (WBUC), which is tightly controlled by the production of Denmark Strait Overflow Water (DSOW), and the production of Labrador Sea Water (LSW) in the inner basin through winter cooling and convection. The upper 184m of sediment at Eirik Ridge spans marine isotope stages (MIS) 32 to 1. At this site, two distinct regimes are observed: prior to MIS 20, the isotopic record resembles that of the open North Atlantic records of the interval, whereas a more site-specific pattern is observed afterwards. This later pattern was characterized by i) high DSOW production rates and strong WBUC during interglacial stages, as indicated by sedimentation rates, ii) large amplitude δ18O-shifts from glacial stages to interglacial stages (>2.5‰) and iii) an overall range of δ18O-values significantly more positive than before. At Orphan Knoll, the 105m record spans approximately 800ka and provides direct information on linkages between the northeastern sector of the Laurentide Ice Sheet and the North Atlantic. At this site, a shift towards larger amplitude glacial/interglacial ranges of δ18O-values occurred after MIS 13, although isotopic records bear a typical North Atlantic signature, particularly during MIS 5, in contradiction to those of Eirik Ridge, where substages 5a to 5c are barely recognized. Closer examination of δ18O-records in planktic and benthic foraminifera demonstrates the presence of distinct deep-water masses in the inner vs. outer LS basins during MIS 11 and more particularly MIS 5e. Data confirm that the modern AMOC, with LSW formation, seems mostly exclusive to the present interglacial, and also suggest some specificity of each interglacial with respect to the production rate of DSOW and the AMOC, in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.