Abstract
Abstract Design models often contain a combination of discrete, integer, and continuous variables. Previously, the Adaptive Linear Programming (ALP) Algorithm, which is based on sequential linearization, has been used to solve design models composed of continuous and Boolean variables. In this paper, we extend the ALP Algorithm using a discrete heuristic based on the analogy of an animal foraging for food. This algorithm for mixed discrete/continuous design problems integrates ALP and the foraging search and is called Foraging-directed Adaptive Linear Programming (FALP). Two design studies are presented to illustrate the effectiveness and behavior of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.