Abstract

We think because we eat. Or as Descartes might have said, on a little more reflection, “I need to eat, therefore I think.” Animals that forage for a living repeatedly face the problem of searching for a sparsely distributed resource in a vast space. Furthermore, the resource may occur sporadically and episodically under conditions of true uncertainty (nonstationary, complex and non-linear dynamics). I assert that this problem is the canonical problem solved by intelligence. It’s solution is the basis for the evolution of more advanced intelligence in which the space of search includes that of concepts (objects and relations) encoded in cortical structures. In humans the conscious experience of searching through concept space we call thinking. The foraging search model is based upon a higher-order autopoeitic system (the forager) employing anticipatory processing to enhance its success at finding food while avoiding becoming food or having accidents in a hostile world. I present a semi-formal description of the general foraging search problem and an approach to its solution. The latter is a brain-like structure employing dynamically adaptive neurons. A physical robot, MAVRIC, embodies some principles of foraging. It learns cues that lead to improvements in finding targets in a dynamic and nonstationary environment. This capability is based on a unique learning mechanism that encodes causal relations in the neural-like processing element. An argument is advanced that searching for resources in the physical world, as per the foraging model, is a prototype for generalized search for conceptual resources as when we think. A problem represents a conceptual disturbance in a homeostatic sense. The finding of a solution restores the homeostatic balance. The establishment of links between conceptual cues and solutions (resources) and the later use of those cues to think through to solutions of quasi-isomorphic problems is, essentially, foraging for ideas. It is a quite natural extension of the fundamental foraging model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.