Abstract

AbstractSpecies conservation requires understanding the mechanistic processes of habitat selection and their effects on fitness. Nonetheless, there are few fitness‐based habitat selection models for aquatic organisms. We examined multiple aspects of foraging behaviour of nonanadromous Dolly Varden Charr (Salvelinus malma) in Panguingue Creek, Alaska, USA and applied these data to test a fitness‐based microhabitat selection model. Velocity negatively affected prey capture success, positively affected holding velocity, and had no effect on reactive distance. Dominance was a better predictor of prey capture success than length difference between competitors, but there was no relationship between these variables and holding velocity or reactive distance. We used the velocity–prey capture success relationship to parameterise the microhabitat habitat selection model and compared the predicted optimal holding velocity to the 95% confidence interval (24.9–29.3 cm/s) of holding velocities occupied by Dolly Varden (N = 29) in Panguingue Creek. The prediction of 24.0 cm/s fell just slightly (0.9 cm/s) outside the lower limit of the confidence interval; the model barely failed to predict holding velocity for this species in Panguingue Creek. Although this discrepancy fell within measurement error, model failure also may have been due to influence of high turbulence on fish holding velocities in the creek, low sample sizes imposed by permitting limitations, or field logistical issues. The relationship between velocity and prey capture success is an important aspect of drift feeder habitat selection. Our optimal holding velocity prediction for Dolly Varden should aid in the management and conservation of this species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.