Abstract

Diadromy affords fish access to productive ecosystems, increasing growth and ultimately fitness, but it is unclear whether these advantages persist for species migrating within highly altered habitat. Here, we compared the foraging success of wild Delta Smelt—an endangered, zooplanktivorous, annual, semi-anadromous fish that is endemic to the highly altered San Francisco Estuary (SFE)—collected from freshwater (<0.55 psu) and brackish habitat (≥0.55 psu). Stomach fullness, averaged across three generations of wild Delta Smelt sampled from juvenile through adult life stages (n = 1,318), was 1.5-fold higher in brackish than in freshwater habitat. However, salinity and season interacted, with higher fullness (1.7-fold) in freshwater than in brackish habitat in summer, but far higher fullness in brackish than freshwater habitat during fall/winter and winter/spring (1.8 and 2.0-fold, respectively). To examine potential causes of this interaction we compared mesozooplankton abundance, collected concurrently with the Delta Smelt, in freshwater and brackish habitat during summer and fall/winter, and the metabolic rate of sub-adult Delta Smelt acclimated to salinities of 0.4, 2.0, and 12.0 psu in a laboratory experiment. A seasonal peak in mesozooplankton density coincided with the summer peak in Delta Smelt foraging success in freshwater, and a pronounced decline in freshwater mesozooplankton abundance in the fall coincided with declining stomach fullness, which persisted for the remainder of the year (fall, winter and spring). In brackish habitat, greater foraging ‘efficiency’ (prey items in stomachs/mesozooplankton abundance) led to more prey items per fish and generally higher stomach fullness (i.e., a higher proportion of mesozooplankton detected in concurrent trawls were eaten by fish in brackish habitat). Delta Smelt exhibited no difference in metabolic rate across the three salinities, indicating that metabolic responses to salinity are unlikely to have caused the stomach fullness results. Adult migration and freshwater spawning therefore places young fish in a position to exploit higher densities of prey in freshwater in the late spring/summer, and subsequent movement downstream provides older fish more accessible prey in brackish habitat. Thus, despite endemism to a highly-altered estuary, semi-anadromy provided substantial foraging benefits to Delta Smelt, consistent with other temperate migratory fish.

Highlights

  • Animal movement is a major driver of species abundance and distributions, making its causes and consequences important to ecology, evolutionary biology and conservation [1]

  • Based on California Department of Fish and Wildlife (CDFW)’s long-term mesozooplankton monitoring data, mesozooplankton abundance has declined since the 1970s in both freshwater and brackish habitat in the San Francisco Estuary (SFE)

  • In terms of food resources for zooplanktivorous fish like the Delta Smelt, the decline is likely more significant than Fig 1 indicates because mean mesozooplankton size has declined [24], reducing foraging success of SFE fish [31]

Read more

Summary

Introduction

Animal movement is a major driver of species abundance and distributions, making its causes and consequences important to ecology, evolutionary biology and conservation [1]. Migration of diadromous fishes involves movement between fresh and saltwater, and is thought to have evolved to increase survival of larvae and juveniles and to improve the foraging success of adults [8, 9]. Diadromous species include anadromous fishes, which spend most of their lives in saltwater and return to freshwater to spawn, and catadromous fishes which exhibit the opposite life history strategy [8]. Gross et al [10] provides compelling evidence for the bottom-up portion of the hypothesis as outlined by Moyle and Cech [8]: the authors found that catadromy is a far more common life history strategy at low latitudes where oceans are less productive than freshwater, whereas anadromy is more common at higher latitudes where marine ecosystems are more productive. Kedney et al [11] found support for the top-down portion of the hypothesis [8], observing that Threespine Stickleback eggs and males in brackish habitat were subject to higher predation rates than their freshwater counterparts

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call