Abstract

Beyond grazing, managed grasslands provide ecological services that may offer economic incentives for multifunctional use. Increasing biodiversity of plant communities may maximize net primary production by optimizing utilization of available light, water, and nutrient resources; enhance production stability in response to climatic stress; reduce invasion of exotic species; increase soil OM; reduce nutrient leaching or loading in surface runoff; and provide wildlife habitat. Strategically managed grazing may increase biodiversity of cool-season pastures by creating disturbance in plant communities through herbivory, treading, nutrient cycling, and plant seed dispersal. Soil OM will increase carbon and nutrient sequestration and water-holding capacity of soils and is greater in grazed pastures than nongrazed grasslands or land used for row crop or hay production. However, results of studies evaluating the effects of different grazing management systems on soil OM are limited and inconsistent. Although roots and organic residues of pasture forages create soil macropores that reduce soil compaction, grazing has increased soil bulk density or penetration resistance regardless of stocking rates or systems. But the effects of the duration of grazing and rest periods on soil compaction need further evaluation. Because vegetative cover dissipates the energy of falling raindrops and plant stems and tillers reduce the rate of surface water flow, managing grazing to maintain adequate vegetative cover will minimize the effects of treading on water infiltration in both upland and riparian locations. Through increased diversity of the plant community with alterations of habitat structure, grazing systems can be developed that enhance habitat for wildlife and insect pollinators. Although grazing management may enhance the ecological services provided by grasslands, environmental responses are controlled by variations in climate, soil, landscape position, and plant community resulting in considerable spatial and temporal variation in the responses. Furthermore, a single grazing management system may not maximize livestock productivity and each of the potential ecological services provided by grasslands. Therefore, production and ecological goals must be integrated to identify the optimal grazing management system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call