Abstract

Atlantic herring (Clupea harengus; hereafter herring) is a forage fish that transfers energy from lower to higher trophic levels and sustains high-volume fisheries in the North Atlantic. This study aims to improve our understanding of the ecology of Newfoundland herring and its vulnerability to climate change by identifying key prey items and describing adult herring feeding strategies. We compared plankton assemblages to stomach content and stable isotope analyses from herring collected in Trinity Bay, Newfoundland, in late summer and autumn 2017–2019. Six distinct zooplankton communities were identified across all years, with a shift in community structure in September 2018. This shift coincided with a change from fresher, warmer waters (12–17 °C) to more saline, cooler waters (10.5 °C). The most frequently consumed prey items were amphipods (Themisto spp.) and calanoid copepods (primarily Calanus and Temora spp.). Fish eggs, larvae, and juveniles, primarily identified as capelin, were observed in stomach contents in all years. Fish contributed most to diets in 2017, which corresponded with the peak year for larval densities in Trinity Bay, suggesting that piscivory may increase at higher larval densities. Herring were opportunistic feeders, although some individuals exhibited selective feeding on copepods, amphipods, euphausiids, and the early life stages of fishes. Stable isotope analyses supported the finding that herring piscivory is prevalent in eastern Newfoundland. Given its adaptive feeding strategy and wide range of consumed prey, we conclude that adult Newfoundland herring is resilient to bottom-up changes observed in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call