Abstract
The folding of the sequence (21)DTVKLMYKGQPMTFR(35) from staphylococcal nuclease into a β-hairpin, nucleated by the turn region YKGQP, is known to be an early folding event. With YKGQ being the shortest sequence for a β-turn model and in view of its importance to the folding of staphylococcal nuclease, we investigated the thermodynamics of turn formation at a range of temperatures from 280 to 380 K, with a regular interval of 10 K. Eleven independent molecular dynamics simulations (under NPT conditions) were performed using the GROMACS package of programs and the OPLS-AA/L all-atom force field, each for a time period of 1 μs. Turn formation is supported by enthalpy at lower temperatures, while entropy supports it at higher temperatures. There are modest free energy barriers between turn and extended conformational ensembles. The turn propensity persists even at elevated temperatures. The role of proline in driving the turn formation has been re-examined, and it is inferred that the absence of proline does not affect turn propensity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.