Abstract

Salmonella is one of the oldest bacteria known to man, yet it is also one of the most prevalent when it comes to foodborne-related diseases and outbreaks. Naturally present in the environment and difficult to treat on fresh produce, Salmonella represents an important food safety challenge. Emerging technologies such as whole genome sequencing (WGS) and next generation sequencing (NGS) now offer promising applications within the realm of food safety that can significantly change the way routine testing, inspections and disease surveillance are done. They offer potential avenues that may foster more sustainable agricultural and environmental practices to detect and reduce the presence of Salmonella. Strategies are being developed to better cluster, integrate and share genomic data to facilitate the development of diagnostic tests and control methods, as well as generate robust evidence to better inform future policy and regulatory decision-making. Using the approaches developed by the Salmonella Syst-OMICS consortium, a large-scale Canadian-based genomic project, this paper discusses the policy and regulatory considerations for the applications of WGS and NGS technologies in the development of testing and biocontrol tools for food safety. The paper presents an overview of the current regulatory framework for the approval of testing methodologies for Salmonella. It discusses considerations related to (1) the development of a new test for Salmonella, (2) the potential establishment of a Salmonella risk virulence classification scheme, and (3) the development of a biocontrol method to reduce the presence of Salmonella on fresh produce.

Highlights

  • Eating a well-balanced diet integrating fruits and vegetables is known to alleviate the risks of developing several non-communicable diseases including heart-related conditions (Acheson and Williams, 1983; van’t Veer et al, 2000; Lock et al, 2005; Wang et al, 2014; Rodriguez-Casado, 2016)

  • In the context of microbial testing of fresh produce, two instruments are paramount: the Food and Drug Act (Canada, 1985b), which provides for the regulation and management of food standards; and the Canada Agricultural Products Act (Canada, 1985a), which provides further directions for the monitoring of fresh produce

  • In the field of agriculture and food safety, much has been accomplished through the continued improvement of methodological techniques that create predictive modeling of risks related to foodborne pathogens contamination and control

Read more

Summary

Introduction

Eating a well-balanced diet integrating fruits and vegetables is known to alleviate the risks of developing several non-communicable diseases including heart-related conditions (Acheson and Williams, 1983; van’t Veer et al, 2000; Lock et al, 2005; Wang et al, 2014; Rodriguez-Casado, 2016). A key component of this approach is the technological tools used to support the management of the risks related to pathogen contamination and the enforcement measures that serve to predict, prevent, identify and address potential microbial risk exposure (Lammerding and Fazil, 2000). In this context, the regulatory framework is one of the essential vehicles through which the development and translation of these technologies can best occur

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.