Abstract
Abstract Data assimilation is used among other things to constrain the initial conditions of weather forecasting models by fitting the model fields to observations made over a certain time interval. In particular, it tries to tie incomplete data with model constraints to detect and correct for initial condition errors. This is possible only if initial condition errors leave their signature on the data assimilated and if the model is capable of faithfully reproducing such signatures. Using simulations of the evolution of convective storms in the Great Plains over an active 6-day period, the propagation of initial condition errors to other variables as well as their effect on the accuracy of the forecasts were investigated. Increasing the assimilation time window boosts the ability of assimilation systems to detect a variety of initial condition errors; however, limits to the predictability of convective events impose a maximum assimilation period that is a function of the type of measurements assimilated as well as of the type of errors one tries to correct for. These findings are then used to suggest changes in assimilation approaches to take into account the different predictability times of the model fields constrained by assimilation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.