Abstract

Pulsar timing arrays (PTAs) have reported evidence for a stochastic gravitational wave (GW) background at nanohertz frequencies, possibly originating in the early Universe. We show that the spectral shape of the low-frequency (causality) tail of GW signals sourced at temperatures around T≳1 GeV is distinctively affected by confinement of strong interactions (QCD), due to the corresponding sharp decrease in the number of relativistic species, and significantly deviates from ∼f^{3} commonly adopted in the literature. Bayesian analyses in the NANOGrav 15years and the previous international PTA datasets reveal a significant improvement in the fit with respect to cubic power-law spectra, previously employed for the causality tail. While no conclusion on the nature of the signal can be drawn at the moment, our results show that the inclusion of standard model effects on cosmological GWs can have a decisive impact on model selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.