Abstract

Background: Many annual deaths in Spain could be avoided if pollution levels were reduced. Every year, several municipalities in the Community of Andalusia, located in southern Spain, exceed the acceptable levels of atmospheric pollution. In this sense, the evolution of primary air pollutants during the March–June 2020 lockdown can be taken as reliable evidence to analyze the effectiveness of potential air quality regulations. Data and Method: Using a multivariate linear regression model, this paper assesses the levels of NO2, O3, and PM10 in Andalusia within the 2017–2020 period, relating these representative indices of air quality with lockdown stages during the pandemic and considering control variables such as climatology, weekends, or the intrusion of Saharan dust. To reveal patterns at a local level between geographic zones, a spatial analysis was performed. Results: The results show that the COVID-19 lockdown had a heterogeneous effect on the analyzed pollutants within Andalusia’s geographical regions. In general terms, NO2 and PM10 concentrations decreased in the main metropolitan areas and the industrial districts of Huelva and the Strait of Gibraltar. At the same time, O3 levels rose in high-temperature regions of Cordoba and Malaga.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call