Abstract

The effects of the process parameters of ultrasonic power and normal bonding force on bond formation at ambient temperatures have been investigated with scanning electron microscopy (SEM) and energy-dispersive x-ray (EDX) analysis. A model was developed based on classical microslip theory1 to explain the general phenomena observed in the evolution of bond footprints left on the substrate. Modifications to the model are made due to the inherent differences in geometry between ball-bonding and wedge-bonding. Classical microslip theory describes circular contacts undergoing elastic deformation. It is shown in this work that a similar microslip phenomenon occurs for elliptical wire-to-flat contacts with plastically deformed wire. It is shown that relative motion exists at the bonding interface as peripheral microslip at lower powers, transitioning into gross sliding at higher powers. With increased normal bonding forces, the transition point into gross sliding occurs at higher ultrasonic bonding powers. These results indicate that the bonding mechanisms in aluminum wire wedge-bonding are very similar to those of gold ball-bonding, both on copper substrate. In ultrasonic wedge-bonding onto copper substrates, the ultrasonic energy is essential in forming bonding by creating relative interfacial motion, which removes the surface oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.