Abstract

BackgroundThe objective of this biomechanical study is to compare two variations of single-row knotless techniques (Knotless repair and Rip-stop Knotless repair) against a single-row double-loaded anchor (DL) repair, focused on evaluating contact pressure and contact area amongst three different single-row techniques for rotator cuff repairs.MethodsA total of 24 fresh frozen human shoulders were tested. Specimens were randomly assigned into one of the three single-row (SR) repair groups: A Knotted single-row double-loaded anchor (DL) repair, a Knotless (K) repair, or a Knotless Rip-Stop (KRS) repair. The footprint was measured after complete detachment of the supraspinatus tendon from the greater tuberosity, introducing pressure sensors between bony footprint and detached rotator cuff, and finally reconstructing it. All specimens were mounted onto a servohydraulic test system to analyze contact variables at 0° and 30° of abduction with 0 N, 30 N and 50 N of tension.ResultsGroups did not differ significantly in their footprint sizes: DL group 359.75 ± 58.37 mm2, K group 386.5 ± 102.13 mm2, KRS group 415.87 ± 93.80 mm2 (p = 0.84); nor in bone mineral density: DL group 0.25 ± 0.14 g/cm2, K group 0.32 ± 0.19 g/cm2, KRS group 0.32 ± 0.13 g/cm2, (p = 0.75) or average age. The highest mean pressurized contact area measured for the K repair was 248.1 ± 50.9 mm2, which equals a reconstruction of 67.1 ± 19.3% at 0° abduction and a 50 N supraspinatus load. This reconstructed area was significantly greater compared with the DL repair 152.8 ± 73.1 mm2, reconstructing 42.0 ± 18.5% on average when under the same conditions (p = 0.04). The mean contact pressure did not significantly differ amongst groups (p = 1.0): DL group 30.8 ± 17.4 psi, K group 30.9 ± 17.4 psi and KRS group 30.0 ± 10.9 psi. Neither the 30° abduction angle nor the supraspinatus load had a significant influence on the contact pressure in our study.ConclusionBoth single-row knotless techniques resulted in significantly higher footprint reconstruction, providing larger contact area and a more uniform pressure distribution when compared with the single-row Knotted techniques. The mean contact pressure did not differ among groups significantly. These knotless techniques may be an alternative if the surgeon decides to perform a single-row rotator cuff repair.Level of evidenceBasic Science Study, Biomechanics.

Highlights

  • The objective of this biomechanical study is to compare two variations of single-row knotless techniques (Knotless repair and Rip-stop Knotless repair) against a single-row double-loaded anchor (DL) repair, focused on evaluating contact pressure and contact area amongst three different single-row techniques for rotator cuff repairs

  • When the supraspinatus was loaded, there was a progressive change in the percentages of footprint coverage with statistically significant differences between DL repair and K

  • We found no significant differences in contact area or contact pressure when changing the abduction angle from 0° and 30° in each of the three repairs

Read more

Summary

Introduction

The objective of this biomechanical study is to compare two variations of single-row knotless techniques (Knotless repair and Rip-stop Knotless repair) against a single-row double-loaded anchor (DL) repair, focused on evaluating contact pressure and contact area amongst three different single-row techniques for rotator cuff repairs. Attention has been directed to improve biomechanical parameters of repair constructs by the modification of repair techniques, number of surgical implants, and invention of innovative materials [4, 5] Appropriate use of those techniques is highly dependent on the surgeon’s experience and ability to manage an arthroscopic cuff repair [6]. Prior studies showed that increasing tendon loads would increase compression and frictional forces in addition to significantly increasing contact area and pressure. This was seen for both the transosseous equivalent (TOE) and single-row (SR) repairs [7]. Further discussions on the disadvantage of knotted compared with knotless fixation are still ongoing Because it may increase operative time, and because there is considerable variation in knot strength between surgeons [13]. Possible advantages regarding contact pressure and contact area are yet to be quantified

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call