Abstract

Footprint characteristics for passive scalar concentration in the convective boundary layer (CBL) are investigated. A backward Lagrangian stochastic (LS) dispersion model and a large eddy simulation (LES) model are used in the investigation. Typical characteristics of the CBL and their responses to the surface heterogeneity are resolved from the LES. Then the turbulence fields are used to drive the backward LS dispersion. To remedy the spoiled description of the turbulence near the surface, Monin-Obukhov similarity is applied to the lowest LES level and the surface for the modeling of the backward LS dispersion. Simulation results show that the footprint within approximately 1 km upwind predominates in the total contribution. But influence from farther distances also exists and is even slightly greater than that from closer locations. Surface heterogeneity may change the footprint pattern to a certain degree. A comparison to three analytical models provides a validation of the footprint simulations, which shows the possible influence of along-wind turbulence and the large eddies in the CBL, as well as the surface heterogeneity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call