Abstract

Foot ulcers are a common complication of diabetes and are the consequence of trauma to the feet and a reduced ability to perceive pain in persons with diabetes. Ulcers appear internally when pressures applied on the foot create high-internal strains below bony structures. It is therefore important to monitor tissue strains in persons with diabetes. We propose to use a biomechanical model of the foot coupled with a pressure sensor to estimate the strains within the foot and to determine whether they can cause ulcer formation. Our biomechanical foot model is composed of a finite element mesh representing the soft tissues, separated into four Neo-Hookean materials with different elasticity: plantar skin, non-plantar skin, fat and muscles. Rigid body models of the bones are integrated within the mesh to rigidify the foot. Thirty-three joints connect those bones around cylindrical or spherical pivots. Cables are included to represent the main ligaments in order to stabilise the foot. This model simulates a realistic behaviour when the sole is subjected to pressures measured with a sensor during bipedal standing. Surface strains around 5% are measured below the heel and metatarsal heads, while internal strains are close to 70%. This strain estimation, when coupled to a pressure sensor, could consequently be used in a patient alert system to prevent ulcer formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.