Abstract

ObjectiveThe unique foot morphology and distinctive functions facilitate complex tasks and strategies such as standing, walking, and running. In those weight-bearing activities, postural stability (PS) plays an important role. Correlations among foot type, PS, and other musculoskeletal problems that increase sport injury risk are known. However, long-term associations among the foot type, the PS, and body weight (BW) distribution are lacking. Thus, the purpose of this study was to longitudinally identify changes in foot morphology, PS, and symmetry in BW distribution during adolescence among elite male soccer players.MethodsThirty-five Czech elite male soccer players (age, 15.49 ± 0.61 years; BW, 64.11 ± 6.16 kg; body height, 174.62 ± 5.71 cm) underwent foot type, PS, and BW distribution measurements during 3 consecutive years (T1, T2, T3). The Chippaux-Smirak index (CSI), BW distribution, and centre of pressure (COP) displacement (total traveled way [TTW]) of each player for the preferred (PL) and non-preferred leg (NL) were acquired. Repeated-measures analysis of variance (RM ANOVA), Bonferroni´s post hoc tests, and partial eta-squared (ηp2) coefficient were used for investigating the effect of time on selected variables and effect size evaluation.ResultsStatistically significant effect of time on CSI values (PL: F2,68 = 5.08, p < 0.01, ηp2 = 0.13 and NL: F2,68 = 10.87, p < 0.01, ηp2 = 0.24) and COP displacement values (PL: F2,68 = 5.07, p <0.01, ηp2 = 0.13; NL: F2,68 = 3.53, p <0.05, ηp2 = 0.09) for both legs over 3-years period was identified. Furthermore, the Bonferroni´s post hoc analysis revealed a significant improvement of PS values in the PL (TTWT1 = 1617.11 ± 520.22 mm vs. TTWT2 = 1405.29 ± 462.76, p < 0.05; and between TTWT1 = 1617.11 ± 520.22 mm vs. TTWT3 = 1370.46 ± 373.94, p < 0.05). Only BW distribution parameter showed no significant differences, although slightly improved over time.ConclusionsWe observed changes in foot typology, PS, and BW distribution in young elite male soccer players during 3 consecutive years. Results demonstrated that changes in PS and body weight distribution under the high-load sport conditions during adolescence may improve with aging, except for foot morphology. Therefore, foot morphology should be carefully monitored to minimize sport injury risk in professional young soccer players during adolescence. Further research is necessary to determine more clear associations between these parameters, soccer-related injuries, and sport performances.

Highlights

  • The foot is a unique anatomic, neurophysiologic, and functional structure, which facilitate complex tasks and strategies such as standing, walking, and running in human movements [1]

  • Results demonstrated that changes in postural stability (PS) and body weight distribution under the high-load sport conditions during adolescence may improve with aging, except for foot morphology

  • Some studies mentioned that asymmetry of body weight (BW) distribution between the feet leads to overuse of one leg [18]; and according to a review study that focused on soccer injuries reported, up to 24% of all soccer injuries are classified under overuse type [19]

Read more

Summary

Introduction

The foot is a unique anatomic, neurophysiologic, and functional structure, which facilitate complex tasks and strategies such as standing, walking, and running in human movements [1]. Current evidence shows that flexible flatfoot type and its poor function are risk factors of sport injuries [10,11,12]. Previous studies reported that the most frequent injury in soccer is caused by contact with an opponent [14], whereas current research showed an increase for non-contact mechanisms of injuries, such as ball taking, jumping, running, change of direction speed, shooting and landing [15]. These tasks require having a good PS control.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call