Abstract

In this essay, I design a bionic quadruped robot driven by a large torque electric cylinder, and establish a kinematics model of it by coordinate transformation. Then I analyze the phase relationship between the one-legged wobble and the supporting phase. For the Trot gait of bionics quadruped robot, an improved algorithm of foot trajectory planning with low force and low energy consumption is proposed. In the gait planning, with the help of kinematic inverse kinematics, the joint function of the leg is solved and the control function of the telescoping capacity of the electric cylinder is deduced by geometric relationship. In MATLAB environment, I simulate and analyze the gait and energy consumption, and carry out the servo control of each leg of the experimental prototype to realize the walking of Trot gait robot with bionic quadruped robot. The simulation results show that the trajectory planning can achieve the continuous and steady walking of the bionic quadruped robot driven by the electric cylinder. Moreover, the trajectory of the foot is smooth, the torso is small, which proves the effectiveness and rationality of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.