Abstract

The foot strike pattern performed during running is an important variable for runners, performance practitioners, and industry specialists. Versatile, wearable sensors may provide foot strike information while encouraging the collection of diverse information during ecological running. The purpose of the current study was to predict foot strike angle and classify foot strike pattern from LoadsolTM wearable pressure insoles using three machine learning techniques (multiple linear regression―MR, conditional inference tree―TREE, and random forest―FRST). Model performance was assessed using three-dimensional kinematics as a ground-truth measure. The prediction-model accuracy was similar for the regression, inference tree, and random forest models (RMSE: MR = 5.16°, TREE = 4.85°, FRST = 3.65°; MAPE: MR = 0.32°, TREE = 0.45°, FRST = 0.33°), though the regression and random forest models boasted lower maximum precision (13.75° and 14.3°, respectively) than the inference tree (19.02°). The classification performance was above 90% for all models (MR = 90.4%, TREE = 93.9%, and FRST = 94.1%). There was an increased tendency to misclassify mid foot strike patterns in all models, which may be improved with the inclusion of more mid foot steps during model training. Ultimately, wearable pressure insoles in combination with simple machine learning techniques can be used to predict and classify a runner’s foot strike with sufficient accuracy.

Highlights

  • Recreational running is a globally accessible activity due to the limited necessity of sport-essential equipment and facilities

  • Descriptive statistics are presented in Table 2 for each of the independent variables of each step according to their foot strike pattern (FSP) class (FF, MF, RF)

  • The current study supports the feasibility of two-sensor pressure insoles to detect foot strike angle (FSA) and FSP, and aids in the research and coaching of running movements, as well as consumer-based shoe prescription

Read more

Summary

Introduction

Recreational running is a globally accessible activity due to the limited necessity of sport-essential equipment and facilities. The selection of the running shoe appears to affect performance [3,4], the subjective experience of comfort [5,6], and the injury risk of runners [3,7]. A midsole design that facilitates the repetitive and comfortable execution of the preferred FSP (i.e., rear foot (RF), mid foot (MF), or fore foot (FF)) can aid the consumer-based shoe selection and recommendation process [3]. Such a recommendation requires a reliable method for the discrete classification of a runner’s FSP as a prerequisite

Objectives
Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.