Abstract

Many force-plate records of human locomotion show an impulse (the foot strike) shortly after ground contact. The authors' hypothesis is that this results from the rapid deceleration of a mass (the 'effective foot') under forces which compress the heel pad. The quantitative implications are investigated through an illustrative calculation. The observations used are (a) the peak force reached in foot strike (b) the vertical velocity of the foot immediately before ground contact and (c) the properties of the heel pad in compression. Data for (a) and (b) are available in the literature; measurements for (c) are presented here. The deductions are: (a) the time taken to reach peak force is about 5.4 ms, which agrees with published measurements; (b) the mass of the effective foot is about 3.6 kg. The effective foot thus includes a substantial portion of the leg: this seems reasonable. The models used for the calculations clarify the relationship between the foot strike and the shock wave, which it generates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.