Abstract

Gait analysis using optical tracking equipment has been demonstrated to be a clinically useful tool for measuring three-dimensional kinematics and kinetics of the human body. However, in current practice, the foot is treated as a single rigid segment that articulates with the lower leg, meaning the motions of the joints of the foot cannot be measured. A multisegment kinematic model of the foot was developed for use in a gait analysis laboratory. The foot was divided into hindfoot, talus, midfoot, and medial and lateral forefoot segments. Six functional joints were defined: Ankle and subtalar joints, frontal and transverse plane motions of the hindfoot relative to midfoot, supination-pronation twist of the forefoot relative to midfoot, and medial longitudinal arch height-to-length ratio. Twelve asymptomatic subjects were tested during barefoot walking with a six-camera optical stereometric system and passive markers organized in triads. Repeatability of reported motions was tested using coefficients of multiple correlation. Ankle and subtalar joint motions and twisting of the forefoot were most repeatable. Hindfoot motions were least repeatable both within subjects and between subjects. Hindfoot and forefoot pronations in the frontal place were found to coincide with dropping of the medial longitudinal arch between early to midstance, followed by supination and rising of the arch in late stance and swing phase. This multisegment foot model overcomes a major shortcoming in current gait analysis practice-the inability to measure motion within the foot. Such measurements are crucial if gait analysis is to remain relevant in orthopaedic and rehabilitative treatment of the foot and ankle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.