Abstract

BackgroundFlat-footed individuals are believed to have poorer jump performance compared to normal-arched individuals. Foot orthoses are commonly used to support the deformed foot arch, and improve normal foot function. However, it is unclear if foot orthoses use affects jump performance in athletes. Our study aims to investigate if foot type and/or foot orthosis influence countermovement jump (CMJ) and standing broad jump (SBJ) performance and lower limb biomechanics.MethodsTwenty-six male basketball players were classified into normal-arched (n = 15) or flat-footed (n = 11) groups using the Chippaux-Smirak index, navicular drop test, and the resting calcaneal angle measurement. They performed jumps with and without prefabricated foot orthoses. We measured jump height and distance for CMJ and SBJ, respectively. Hip, knee and ankle joint angles, angular velocities, moments and powers during take-off were also measured.ResultsFor CMJ, the flat-footed group exhibited less ankle plantarflexion (F1,24 = 8.407, p = 0.008, ηp2 = 0.259 large effect) and less hip joint power (F1,24 = 7.416, p = 0.012, ηp2 = 0.244 large effect) than the normal-arched group. Foot orthoses reduced ankle eversion in both groups (F1,24 = 6.702, p = 0.016, ηp2 = 0.218 large effect). For SBJ, the flat-footed group produced lower peak hip angular velocity (F1,24 = 7.115, p = 0.013, ηp2 = 0.229 large effect) and generated lower horizontal GRF (F1,24 = 5.594, p = 0.026, ηp2 = 0.189 large effect) than the normal-arched group. Wearing foot orthoses reduced ankle eversion (F1,24 = 5.453, p = 0.028, ηp2 = 0.185 large effect), peak horizontal GRF (F1,24 = 13.672, p = 0.001, ηp2 = 0.363 large effect) and frontal plane ankle moment (F1,24 = 4.932, p = 0.036, ηp2 = 0.170 large effect).ConclusionFoot type and the use of foot orthoses influence take-off biomechanics, but not actual CMJ and SBJ performances in basketball players. Compared to the normal-arched individuals, flat-footed athletes generated smaller propulsion GRF and lower hip flexion velocity and power, which suggests possible compensatory movement strategies to maximise jump performance. Future studies may investigate whether these altered biomechanics, taking into consideration their respective magnitude and effect sizes, may have implications on lower limb injuries. The use of foot orthoses resulted in biomechanical changes in both the normal-arched and flat-footed groups but does not enhance jumping performance.

Highlights

  • Flat-footed individuals are believed to have poorer jump performance compared to normal-arched individuals

  • Our study aimed to investigate the effects of foot type and foot orthoses on the jump performance and lower limb biomechanics of trained basketball players

  • Countermovement jump There were no significant interactions between foot type and foot orthoses for all jump height, kinematics and kinetic variables (p > 0.05, Tables 1 and 2)

Read more

Summary

Introduction

Flat-footed individuals are believed to have poorer jump performance compared to normal-arched individuals. Foot orthoses are commonly used to support the deformed foot arch, and improve normal foot function It is unclear if foot orthoses use affects jump performance in athletes. Jumping is one of the most common manoeuvres performed by basketball players in a game. In a competitive basketball game, each player performs 44 jumps on average [1]. Individuals with flat feet in particular have been found to demonstrate poor ability to control foot movements in the ankle and foot complex [2], which may lead to poor jump performance. The association between flat feet and jumping performance has not been fully investigated. Other studies showed that having flat feet did not affect the motor performances in vertical jumps, sprints and static balance in children [4]. The association between arch height and sporting ability agrees with recent findings that static foot posture measurements poorly predicts how the foot will function dynamically [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.