Abstract

Abstract. A decision support system to aid in the risk evaluation of airborne animal diseases was developed for Ireland. The system's primary objective is to assist in risk evaluation of the airborne spread of Foot and Mouth Disease (FMD). The operational system was developed by Met Éireann – the Irish Meteorological Service and CVERA (Centre for Veterinary Epidemiology and Risk Analysis), in co-operation with NOAA-ARL (National Oceanic and Atmospheric Administration – Air Resources Laboratory) and ECMWF (European Centre for Medium-Range Weather Forecasts). The infrastructure largely relies on the HYSPLIT dispersion model driven by both ECMWF meteorological forecasts for longer range simulations, and HARMONIE-AROME meteorological forecasts, a high resolution local area meteorological model, ideal for shorter range national emissions. Following on from previous work by the Bureau of Meteorology, Australia as well as the Australian Department of Agriculture, Fisheries and Forestry, further modifications were made to the HYSPLIT source code to improve the model's characterisation of the Foot and Mouth Disease virus. FMD is a highly infectious disease among cloven hoofed animals that can transmit via airborne means. Biological characteristics related to temperature, humidity, lifespan as well as atmospheric washout were all incorporated either through new or existing functionality of the dispersion model. Combining the model dispersion capabilities of HYSPLIT with a virus emission model and GIS mapping software with farmland zoning, the disease dispersion system becomes a powerful analysis and decision support tool. This airborne animal disease atmospheric dispersion system helps improve emergency preparedness, as well as aid confinement and eradication strategies for relevant Irish authorities, during a disease outbreak.

Highlights

  • Foot and Mouth Disease (FMD) is a highly contagious virus of cloven-hoofed animals

  • The HYSPLIT code was again modified so that virus concentrations decrease exponentially as the humidity falls from 60 % to 1 % in line with Garner et al This threshold of 60 % can be user defined to describe different virus strains or the humidity dependence can be turned off altogether if desired

  • While the defaults are set to a strain of FMD relevant to Ireland, all of the above mentioned parameters can be adjusted by the user to account for other strains as appropriate (Draxler et al, 2018)

Read more

Summary

Introduction

Foot and Mouth Disease (FMD) is a highly contagious virus of cloven-hoofed animals. It is primarily spread through animal to animal contact as well as through third party contact such as physical contact with contaminated farm equipment or feed, but it can be spread through wind dispersion. A leading beef and dairy supplier in Europe, maintains a FMD-free without vaccination status. This provides Ireland with the highest level of access to export markets. Measures include animal movement restrictions, temporary vaccination of animals, and culling. In order to provide better support for the airborne threat, an operational FMD dispersion resource has been developed. This resource primarily has four parts as outlined in Fig. 1; (a) an atmospheric dispersion model, which requires (b) meteorological data and (c) a virus emission model, in order to produce dispersion plumes to feed into (d) a GIS farm exposure risk model

Method
Atmospheric dispersion model
Meteorological data
Virus emission model
Farm risk model
Verification of FMD dispersion functionality
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.