Abstract

Prey availability and predation pressure are thought to be key constraints on larval growth, especially in low-productivity, subtropical environments. Yet, measuring their effects on larval fishes has been challenging, given the dynamic biophysical drivers of plankton distributions and small scales of interactions. We integrated fine-scale net tows (10s of meters) within situimaging to explore how predator-prey interactions influence larval fish growth in the Straits of Florida. Otolith-derived recent growth was analyzed for 3 ecologically important fishes: 2 coral reef labrids (Thalassoma bifasciatumandXyrichtys novacula) and 1 tuna (Katsuwonus pelamis), with differing mean growth rates (labrids 0.25 mm d-1,K. pelamis0.44 mm d-1) and prey (labrids-copepods; tuna-appendicularians). We used generalized additive models to examine the interactive effect of background density and frequency of elevated (>2 SD above background) prey and predators on recent (last 3 d) larval growth. For all taxa, recent growth increased with prey background density. Recent growth of labrids was also higher when copepod densities were more often elevated (14% of transect >20 ind. m-3) above otherwise low background densities (2 ind. m-3). Predators (chaetognaths and hydromedusae) had a growth-selective effect: stronger selection in transects with high-density predator patches, although the direction of the effect was species-specific. The effect of temperature was taxa-specific: growth increased with temperature for the labrids and peaked at an optimum (28°C) for the rapidly growing tuna. Integration of these fine-scale sampling methods improves our understanding of the variable influence of prey and predators on larval growth and, consequently, larval survival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call