Abstract

Intraerythrocytic Plasmodium falciparum digests vast amounts of hemoglobin within an acidic food vacuole (FV). Four homologous aspartic proteases participate in hemoglobin degradation within the FV. Plasmepsin (PM) I and II are thought to initiate degradation of the native hemoglobin molecule. PM IV and histo-aspartic protease (HAP) act on denatured globin further downstream in the pathway. PM I and II have been shown to be synthesized as zymogens and activated by proteolytic removal of a propiece. In this study, we have determined that the proteolytic processing of FV plasmepsins occurs immediately after a conserved Leu-Gly dipeptidyl motif with uniform kinetics and pH and inhibitor sensitivities. We have developed a cell-free in vitro processing assay that generates correctly processed plasmepsins. Our data suggest that proplasmepsin processing is not autocatalytic, but rather is mediated by a separate processing enzyme. This convertase requires acidic conditions and is blocked only by the calpain inhibitors, suggesting that it may be an atypical calpain-like protease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.