Abstract

Replenishment of many marine populations occurs through the entry of juveniles to adult populations following a pelagic larval stage. Because mortality during the pelagic stage is thought to be high and density independent, larval abundance and traits of individual larvae should have strong effects on overall population dynamics in marine organisms. Surprisingly, few experiments have tested how localized interactions among breeding adults affect the quantity and phenotypic traits of larvae they produce. Here I experimentally test for the influence of food competition, mate limitation, and population density on somatic growth, fecundity, and offspring provisioning (larval length and energy reserves) in a planktivorous, territorial coral reef damselfish, Stegastes partitus. I manipulated food supply and adult S. partitus density on isolated patch reefs in the Bahamas and also made behavioral observations of S. partitus occurring on nearby natural reefs at a range of population densities. On the experimental reefs, females experienced density-dependent growth and fecundity; male reproductive success was density dependent, but male growth was not. Density-dependent growth and reproduction were not moderated by food supplementation, and density-dependent reproduction was not influenced by mate availability. On natural reefs, the frequency of aggressive interactions, particularly involving females, increased with population density, implicating aggression-related energetic costs as the source of both forms of density dependence in the experiments. Food supplementation increased female somatic growth and larval energy reserves, suggesting that females allocated surplus energy to future reproductive potential and enhanced offspring quality. Neither experimental treatment affected larval length. By altering patterns of reproduction, the interplay between spatial variation in food availability and population density may drive population dynamics in a broad range of benthic marine organisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.