Abstract

Abstract: Food sales forecasting is concerned with predicting future sales of food-related businesses such as supermarkets, grocery stores, restaurants, bakeries, and patisseries. Companies can reduce stocked and expired products within stores while also avoiding missing revenues by using accurate short-term sales forecasting. This research examines current machine learning algorithms for predicting food purchases. It goes over key design considerations for a data analyst working on food sales forecasting’s, such as the temporal granularity of sales data, the input variables to employ for forecasting sales, and the representation of the sales output variable. It also examines machine learning algorithms that have been used to anticipate food sales and the proper metrics for assessing their performance. Finally, it goes over the major problems and prospects for applied machine learning in the field of food sales forecasting. Keywords: Food, Demand forecasting, Machine learning, Regression, Timeseries forecasting, Sales prediction

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.