Journal of Ornithology | VOL. 151
Read

Food or nesting place? Identifying factors limiting Wryneck populations

Publication Date Apr 11, 2010

Abstract

In recent decades, farmland bird populations have declined strongly as a consequence of agriculture intensification. Birds may have lost breeding sites, food supply or other crucial resources, with the role of multiple factors often remaining unclear. The ant-eating and cavity-breeding Wryneck (Jynx torquilla) may be limited by the availability of cavities, the number of ants or their accessibility. By comparing occupied and unoccupied breeding territories, we investigated the relative role of these factors in the decline of Wrynecks. We compared the characteristics of known Wryneck breeding territories (availability of breeding cavities, food abundance and ground vegetation structure) with randomly selected, fictitious territories (n = 154) in Western Switzerland. We also studied environmental factors that may affect ant nest density. The probability of territory occupancy strongly increased with both nestbox availability and ant abundance. In addition, this probability peaked around 50% of bare ground cover. Habitat types that harbour low ant abundance such as cropland and grassland were avoided. Ant nest density decreased with increasing amounts of bare ground, and it was particularly high in vineyards. Our results showed that breeding cavities, food availability and its accessibility all limit Wryneck distribution. The maintenance and restoration of ant rich grassland, interspersed with patches of bare ground and with hollow trees or dedicated nestboxes in the surroundings, are essential to preserve Wryneck populations. ...

Concepts

Patches Of Bare Ground Ant Nest Density Fruit Tree Plantations Farmland Bird Populations Jynx Torquilla Number Of Ants Hollow Trees Western Switzerland Breeding Territories Ant Abundance

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.