Abstract
The cost of launching food into space is very high. An alternative is to make food during missions using methods such as artificial light photosynthesis, greenhouse, nonbiological synthesis of food, electric bacteria, and hydrogen-oxidizing bacteria (HOB). This study compares prepackaged food, artificial light microalgae, and HOB. The dominant factor for each alternative is its relative mass due to high fuel cost needed to launch a payload into space. Thus, alternatives were evaluated using an equivalent system mass (ESM) technique developed by the National Aeronautics and Space Administration. Three distinct missions with a crew of 5 for a duration of 3 years were analyzed; including the International Space Station (ISS), the Moon, and Mars. The components of ESM considered were apparent mass, heat rejection, power, and pressurized volume. The selected power source for all systems was nuclear power. Electricity to biomass efficiencies were calculated for space to be 18% and 4.0% for HOB and microalgae, respectively. This study indicates that growing HOB is the least expensive alternative. The ESM of the HOB is on average a factor of 2.8 and 5.5 less than prepackaged food and microalgae, respectively. This alternative food study also relates to feeding Earth during a global agricultural catastrophe. Benefits of HOB include recycling wastes including CO2 and producing O2. Practical systems would involve a variety of food sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.