Abstract

Sensor-based food intake monitoring has become one of the fastest-growing fields in dietary assessment. Researchers are exploring imaging-sensor-based food detection, food recognition, and food portion size estimation. A major problem that is still being tackled in this field is the segmentation of regions of food when multiple food items are present, mainly when similar-looking foods (similar in color and/or texture) are present. Food image segmentation is a relatively under-explored area compared with other fields. This paper proposes a novel approach to food imaging consisting of two imaging sensors: color (Red-Green-Blue) and thermal. Furthermore, we propose a multi-modal four-Dimensional (RGB-T) image segmentation using a k-means clustering algorithm to segment regions of similar-looking food items in multiple combinations of hot, cold, and warm (at room temperature) foods. Six food combinations of two food items each were used to capture RGB and thermal image data. RGB and thermal data were superimposed to form a combined RGB-T image and three sets of data (RGB, thermal, and RGB-T) were tested. A bootstrapped optimization of within-cluster sum of squares (WSS) was employed to determine the optimal number of clusters for each case. The combined RGB-T data achieved better results compared with RGB and thermal data, used individually. The mean ± standard deviation (std. dev.) of the F1 score for RGB-T data was 0.87 ± 0.1 compared with 0.66 ± 0.13 and 0.64 ± 0.39, for RGB and Thermal data, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.