Abstract
Fluctuations in food commodities price in East Java Province cause various negative impacts when there are significant changes. To avoid this problem, it is necessary to predict food commodities prices to prevent high price increases. This study aims to apply the Extreme Learning Machine (ELM) method to predict the price of staple food commodities in East Java Province and measure the performance of the ELM in predicting staple food commodities price. The ELM is a method develop from feedforward Artificial Neural Networks (ANN) with one hidden layer or commonly called Single Hidden Layer Feedforward Neural Networks (SLFNs). The prediction process of staple food commodities is carried out using 3 data features, 7 neurons, and composition of training and testing data is 80%: 20%. The results showed that the average level of prediction accuracy for all staple food commodities was 98.79%. This shows that the prediction error is very low, ie the predicted results approach the actual value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.