Abstract

Head-fixed behavioral tasks can provide important insights into cognitive processes in rodents. Despite the widespread use of this experimental approach, there is only limited knowledge of how differences in task parameters, such as motivational incentives, affect overall task performance. Here, we provide a detailed methodological description of the setup and procedures for training mice efficiently on a two-choice lick left/lick right visual discrimination task. We characterize the effects of two distinct restriction regimens, i.e. food and water restriction, on animal wellbeing, activity patterns, task acquisition, and performance. While we observed reduced behavioral activity during the period of food and water restriction, the average animal discomfort scores remained in the ‘sub-threshold’ and ‘mild’ categories throughout the experiment, irrespective of the restriction regimen. We found that the type of restriction significantly influenced specific aspects of task acquisition and engagement, i.e. the number of sessions until the learning criterion was reached and the number of trials performed per session, but it did not affect maximum learning curve performance. These results indicate that the choice of restriction paradigm does not strongly affect animal wellbeing, but it can have a significant effect on how mice perform in a task.

Highlights

  • Rodents, in particular rats and mice, have long been used in behavioral studies exploring the mechanisms underlying learning and memory [1,2]

  • This study provides a detailed description of the setup design and procedures to efficiently train mice using either food or water restriction on an appetitive operant visual discrimination task

  • Four weeks before starting food or water restriction, C57Bl/6j mice were transferred from a local animal breeding facility into individual 24hr/day activity monitoring cages (DVC, see Methods) that were kept in an animal holding room with a reversed day/night cycle

Read more

Summary

Introduction

In particular rats and mice, have long been used in behavioral studies exploring the mechanisms underlying learning and memory [1,2]. Such experiments are valuable when combined with simultaneous recordings from neurons involved in the task. This is done with extracellular recordings of single- or multi-unit activity, a technique that can be adopted to freely moving animals [3]. Head-fixation in particular is indispensable under certain conditions, e.g. when precise control over sensory inputs is needed, or when the employed recording technique is sensitive to brain motion, like patch clamp recordings [4] and two-photon microscopy [5].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call