Abstract

In situ technologies were employed to monitor suspended particle flocculation and floc settlement and utilization by a cohort of sea scallops ( Placopecten magellanicus) during the 2000 spring phytoplankton bloom in Bedford Basin, Nova Scotia, Canada. The objectives were to determine the effect of bloom flocculation and settling on food acquisition and utilization by scallops, and to assess the potential role of flocculation in enhancing the bioavailability of trophic resources and particle-reactive contaminants to bivalve filter feeders. The development and flocculation of the phytoplankton bloom were monitored within the surface layer (10 m depth) by in vivo chlorophyll fluorescence and silhouette camera observations. Sedimentation rate, seston abundance and composition, and sea scallop functional responses were monitored at 20 m depth (below the bloom) to provide insight into the potential forcing of feeding and digestion processes by changes in the abundance, composition and properties of the ambient food supply. The bloom began in mid-March and median floc diameter at 10 m depth increased rapidly from 200 μm to greater than 400 μm between 21 and 28 March. Flocs were observed to be abundant in the surface layer up to 4 April. Daily vertical particle flux was high during the last week of March and declined to near zero by 1 April. Clearance rates of scallops held at 20 m depth were relatively high (average ± S.D.; 11.7 ± 4.0 L h − 1 ) during the period of bloom settlement and declined rapidly to low levels (0.4 ± 0.9 L h − 1 ) after 31 March. Average absorption efficiency also declined (0.88 ± 0.01 to 0.78 ± 0.05) after bloom settlement. Daily biodeposition rates by scallops were poorly correlated with temporal variations in the quantity (total particulate matter and chlorophyll a concentration) or quality (organic content) of seston available to the scallops, but were significantly correlated with sedimentation rate. Comparison of disaggregated inorganic particle size distributions for suspended particulate matter, settled particles, and scallop feces indicated that fine-grained particles (1 to 4 μm) were effectively ingested by sea scallops—an indication of whole floc ingestion. The settlement of flocs produced during the spring bloom appears to be important in regulating this species physiological energetics and for enhancing the bioavailablility of fine particles (including picoplankton) and particle-reactive contaminants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call