Abstract

As top-predators in marine ecosystems, seabirds are regarded as appropriate bioindicator species for a variety of contaminants. Mercury (Hg) is a global pollutant, which can biomagnify along marine and freshwater food webs. Therefore, mercury body burden in seabirds, such as gulls, will integrate information about pollution in the environment. In the Ebro Delta (NE Spain), legacy mercury pollution from a chlor-alkali industry located ca. 100 km upstream of the Ebro river mouth has been affecting the delta environment. We have analyzed a 15-year temporal series (2004–2019) of Hg in birds from a breeding colony of Audouin’s gull (Ichthyaetus audouinii) in the Ebro Delta to understand how fluctuations in Hg levels are coupled to human activities in the industrial area in the upstream region of the river. Stable isotopic signatures of C and N (δ13Cbulk and δ15Nbulk) are determined to characterize the trophic ecology of the species. Since only δ13Cbulk but not δ15Nbulk was associated with THg levels, we used compound-specific stable nitrogen isotope analysis of amino acids (AA-CSIA) to evaluate the causes of variation in δ15Nbulk to further investigate the idea of a decoupling of δ15Nbulk and THg over time. We found Audouin’s gull to be sensitive to Hg variations in the environment due to anthropogenic changes and to be a good indicator species for this contaminant in the Ebro Delta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.