Abstract

Raman crystallography permits the monitoring of chemical events in single-protein crystals in real time. Using a Raman microscope, it is possible to obtain protein Raman spectroscopic data of unprecedented quality and stability. The latter features allow us to obtain the Raman spectrum for small molecules soaking into crystals under normal (nonresonance) Raman conditions. Thus, via an approach utilizing Raman difference spectroscopy, we can quantitate the amount of ligand in the crystal, determine the chemistry of inhibitor-protein interactions, and follow chemical reactions in the active site on the time scale of minutes. While providing unique chemical insights, these data also provide an invaluable guide for determining the conditions for flash-freezing crystals for X-ray crystallographic analysis. In addition, the Raman difference spectra often contain contributions from protein modes due to protein conformational changes occurring upon ligand binding. These features allow us to probe events ranging from small cooperative conformational changes to massive and unexpected secondary structure changes in the crystal. An experimental advantage of Raman crystallography is that the data can be collected from crystals in situ, in sitting or hanging drops, under the conditions used to grow the crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.