Abstract
We previously demonstrated that Fst expression is highest in brown adipose tissue (BAT) and skeletal muscle, but is also present at substantial levels in epididymal and subcutaneous white adipose tissues (WATs). Fst promotes mouse brown preadipocyte differentiation and promotes browning during differentiation of mouse embryonic fibroblasts. Fst-transgenic (Fst-Tg) mice show substantial increases in circulating Fst levels and increased brown adipose mass. BAT of Fst-Tg mice had increased expression of brown adipose-associated markers including uncoupling protein 1 (UCP1), PRDM16, PGC-1α, and Glut4. WATs from Fst-Tg mice show upregulation of brown/beige adipose markers and significantly increased levels of phosphorylated p38 MAPK/ERK1/2 proteins compared with the wild-type (WT) mice. Pharmacological inhibition of pp38 MAPK/pERK1/2 pathway of recombinant mouse Fst (rFst) treated differentiating 3T3-L1 cells led to significant blockade of Fst-induced UCP1 protein expression. On the other hand, BAT from Fst-Tg mice or differentiating mouse BAT cells treated with rFst show dramatic increase in Myf5 protein levels as well as upregulation of Zic1 and Lhx8 gene expression. Myf5 levels were significantly downregulated in Fst knock-out embryos and small inhibitory RNA-mediated inhibition of Myf5 led to significant inhibition of UCP1, Lhx8, and Zic1 gene expression and significant blockade of Fst-induced induction of UCP1 protein expression in mouse BAT cells. Both interscapular BAT and WAT tissues from Fst-Tg mice display enhanced response to CL316,243 treatment and decreased expression of pSmad3 compared with the WT mice. Therefore, our results indicate that Fst promotes brown adipocyte characteristics in both WAT and BAT depots in vivo through distinct mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.