Abstract

Follistatin-like 1 (FSTL1), an extracellular glycoprotein, has been reported to decrease apoptosis in ischemic cardiac diseases, but its effect in ischemic stroke has not been examined. We hypothesized that recombinant FSTL1 attenuates neuronal apoptosis through its receptor disco-interacting protein 2 homolog A (DIP2A) and the Akt pathway after middle cerebral artery occlusion (MCAO) in rats. One hundred forty male Sprague-Dawley rats were subjected to 2 hours of MCAO followed by reperfusion. In a subset of animals, the time course and location of FSTL1 and DIP2A were detected by Western blot and immunofluorescence double staining. Another set of animals were intracerebroventricularly given either recombinant FSTL1 1 hour after reperfusion or FSTL1-small interfering RNA (siRNA) 48 hours before reperfusion. Additionally, DIP2A was knockdown by siRNA in some animals. Infarction volume and neurological deficits were measured, and the expression of FSTL1, DIP2A, phosphorylated Akt, cleaved caspase-3, and terminal deoxynucleotidyl transferase dUTP nick end labeling were quantified using Western blot. The expression of FSTL1 and DIP2A was increased in neurons and peaked 24 hours after MCAO. Recombinant FSTL1 reduced brain infarction and improved neurological deficits 24 and 72 hours after MCAO via activation of its receptor DIP2A and downstream phosphorylation of Akt. These effects were reversed by DIP2A-siRNA and FSTL1-siRNA. Recombinant FSTL1 decreases neuronal apoptosis and improves neurological deficits through phosphorylation of Akt by activation of its receptor DIP2A after MCAO in rats. Thus, FSTL1 may have potentials as a treatment for patients with ischemic stroke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call