Abstract

Follicular dendritic cells (FDCs) are stromal cells unique to primary and secondary lymphoid follicles. Recirculating resting B cells migrate through the FDC networks, whereas antigen-activated B cells undergo clonal expansion within the FDC networks in a T cell-dependent fashion, thereby generating germinal centers. Here, B cells undergo somatic mutation, positive and negative selection, isotype switching and differentiation into high-affinity plasma cells and memory B cells. Since the discovery of FDCs by electron microscopy as long-term antigen-retaining cells 30 years ago isolation of FDCs and generation of FDC-like cells lines and of FDC-specific monoclonal antibodies have been achieved. FDCs express all three types of complement receptors as well as Ig-Fc receptors, through which antigen-antibody immune complexes are retained. However, the mechanism that prevents FDCs from internalizing the antigens and retaining them in native form for long periods of time remains obscure. Substantial evidence derived from cultures in vitro indicates that FDCs contribute directly to the survival and activation of peripheral B cells. The adhesion between FDCs and B cells is mediated by ICAM-1 (CD54)-LFA-1(CD11a) and VCAM-VLA-4. T cells may interact with FDCs in a CD40/CD40-ligand-dependent fashion. Whether FDCs originate from hematopoietic progenitors or from stromal elements is still a controversy. New evidence suggests the presence of two types of dendritic cells within human germinal centers: (i) the classic FDCs that express DRC-1, KiM4, and 7D6 antigens represent stromal cells; and (ii) the newly identified CD3-CD4-CD11c- germinal center dendritic cells (GCDC) represent hematopoietic cells that may be analogous to the antigen-transporting cells described in mice. Finally, FDCs appear to be involved in the growth of follicular lymphomas and in the pathogenesis of HIV infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.