Abstract

Atresia is a process in ovarian follicles that is regulated by hormone-induced apoptosis. During atresia, granulosa cell (GC) apoptosis is a key mechanism orchestrated through diverse signaling pathways. Cocaine- and amphetamine-regulated transcript (CART) signaling within ovarian GCs has been demonstrated to play a key role in the regulation of follicular atresia in cattle, pigs, and sheep. The present work aimed to investigate the potential local regulatory role of CART in GC apoptosis-induced follicular atresia in buffalo, focusing on the modulation of the AKT/GSK3β/β-catenin signaling pathways, which are the intracellular signaling pathways involved in cell viability. Our findings revealed increased expression of CARTPT and BAX and decreased levels of AKT, β-catenin, and CYP19A1 genes in atretic follicles compared to healthy follicles. Subsequently, CART treatment in the presence of FSH inhibited the FSH-induced increase in GC viability by reducing estradiol production and increasing apoptosis. This change was accompanied by an increase in the gene expression levels of both CARTPT and BAX. At the protein level, treatment with CART in the presence of FSH negatively affected the activity of AKT, β-catenin, and LEF1, while the activity of GSK3β was enhanced. In conclusion, our study shows how CART negatively influences buffalo GC viability, underlying the modulation of the AKT/GSK3β/β-catenin pathway and promoting apoptosis-a key factor in follicular atresia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.