Abstract

Scottish Blackface ewes in high body condition (mean score = 2.86) had a higher mean ovulation rate (1.8 v. 0.9; P < 0.05) and more large (⪖ 4 mm diameter) follicles (4.6 v 2.2; P < 0.05) than ewes in low condition (mean score = 1.84) but similar numbers of small (1–4 mm diameter) follicles (6.3 v 6.0; NS). There was little difference in LH profiles with body condition but FSH and prolactin concentrations were significantly greater, during both luteal and follicular phases of the cycle, in ewes in high condition. Despite the relationships between body condition and ovulation rate and between condition and hormone concentrations, within the high condition groups, there was no significant difference in FSH levels with ovulation rate. Prolactin levels were higher in ewes with a single ovulation than in ewes with two or three ovulations. There was a trend towards a higher mean LH pulse frequency in the luteal phase and a higher mean LH pulse amplitude in the follicular phase in ewes with multiple ovulations compared with ewes with a single ovulation. During oestrus, only circulating prolactin concentrations differed with body condition, being significantly higher in ewes in high condition, but mean LH concentrations were higher and FSH concentrations lower in ewes with multiple ovulations. Subsequent luteal function, as measured by circulating progesterone concentrations, was normal in all ewes. It is concluded that body condition affected the size of the large follicle (⪖ 4 mm diameter) population through changes in FSH and possibly pulsatile LH secretion and prolactin secretion during the luteal and follicular phases of the cycle and that the number of follicles that were potentially ovulatory was probably determined during the luteal phase of the cycle. However, their ability to undergo the final stages of development and to ovulate may be related to the amount of LH secreted during the follicular phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.