Abstract

The mechanisms whereby gestational diabetes mellitus (GDM) increases the risk of fetal overgrowth and development of metabolic diseases later in life are likely to involve changes in nutrient supply to the fetus. Hence, in this work, we hypothesize that GDM may affect folic acid (FA) supply to the placenta and fetus. We compared (3)H-FA uptake by human cytotrophoblasts isolated from normal pregnancies (normal trophoblasts; NTB cells) and GDM pregnancies (diabetic trophoblasts; DTB cells) and investigated the effect of GDM hallmarks on (3)H-FA uptake by BeWo cells. (3)H-FA uptake by NTB and DTB cells was time dependent and acidic pH stimulated. When compared with NTB, (3)H-FA uptake by DTB cells was more sensitive to acidic pH changes and to 5-methyltetrahydrofolate and pemetrexed (PTX) inhibition, indicating a proportionally greater involvement of the proton-coupled folate transporter (PCFT). A 4-h exposure of BeWo cells to lipopolysaccharide (LPS, 1-10 μg/ml) or to high levels of tumor necrosis factor-α (TNF-α, 300 ng/l) significantly reduced (3)H-FA uptake. Moreover, hyperleptinemic conditions (100 ng/ml leptin) decreased (3)H-FA uptake by BeWo cells in a time-dependent manner when compared with normoleptinemic conditions (1 ng/ml leptin). GDM modulates (3)H-FA uptake by the syncytiotrophoblast, and leptin as well as TNF-α downregulate it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.